
SpectralRadex
Release 0.1.1

Apr 12, 2023

User Guide

1 Installation 3
1.1 Pypi . 3
1.2 Manual Install . 3

2 Formalism 5
2.1 RADEX . 5
2.2 Spectral Modelling . 5

3 Referencing 7

4 Trouble Shooting 9
4.1 Malloc() Error . 9
4.2 pip cannot find version . 9
4.3 Mac Issues . 10

5 Spectral Modelling Functions 11

6 Radex Wrapper Functions 13

7 Radex 17
7.1 Parameter Grids . 18

8 Spectral Modelling 21

9 Indices and tables 25

Python Module Index 27

Index 29

i

ii

SpectralRadex, Release 0.1.1

SpectralRadex is a python module made up of two parts: a RADEX wrapper and a spectral model.

A number of libraries exist for the first purpose. However, SpectralRadex uses F2PY to compile a version of RADEX
written in modern Fortran. As a result, running a RADEX model creates no subprocesses, no text files, and can be
easily parallelized. Check our tutorials section for an example of running a grid of RADEX models quickly and
entirely within Python.

For the second purpose, we use the RADEX calculated line opacities and excitation temperatures to calculate the
brightness temperature as a function of frequency. This allows observed spectra to be modelled in python in a non-
LTE fashion. See our spectral modelling tutorial for more.

User Guide 1

SpectralRadex, Release 0.1.1

2 User Guide

CHAPTER 1

Installation

1.1 Pypi

We recommend the simple approach of using pypi:

pip install spectralradex

Note, you may receive an error of the kind

could not find a version that satisfies the requirement spectralradex

which is caused by a bug in how the requirements for spectralradex is configured. Pip will be in the process of
installing a library (pandas/numpy) when this occurs and it can be solved by installing that library through pip before
installing SpectralRadex.

1.2 Manual Install

However, if you wish to install manually, clone the repo and from the main directory run the following

python3 setup.py install

optionally, specify a path for the installation using

python3 setup.py install --prefix=/path/to/my/install

making sure that the install path is part of your PYTHONPATH environmental variable. You’ll need to add the
.egg directory eg. `path/to/my/install/lib/python3.7/site-packages/spectralradex-0.0.
2-py3.7-linux-x86_64.egg`

3

SpectralRadex, Release 0.1.1

4 Chapter 1. Installation

CHAPTER 2

Formalism

2.1 RADEX

RADEX is a non-LTE radiative transfer solver that calculates the intensities of molecular lines assuming an homoge-
neous medium with a simple geometry. For a full description of the code, please see their release paper. The RADEX
code has been modified to meet modern Fortran specifications but is otherwise unchanged in SpectralRadex.

2.2 Spectral Modelling

In order to calculate the emission from a molecular transition as a function of frequency, we need the excitation
temperature and the optical depth as a function of velocity. This allows us to calculate the brightness temperature as a
function of velocity:

𝑇𝐵 = [𝐽𝜈(𝑇𝑒𝑥) − 𝐽𝜈(𝑇𝐵𝐺)](1 − exp(−𝜏𝑣))

Where 𝑇𝑒𝑥 is the excitation temperature and 𝑇𝐵𝐺 is the background temperature, likely 2.73 K. In LTE, the opti-
cal depth at line centre can be calculated from the column density and Boltzmann distribution whilst the excitation
temperature is assumed to be the LTE temperature. We can then calculate 𝜏𝑣 assuming a gaussian line profile:

𝜏𝑣 = 𝜏0𝑒

(︂
−4𝑙𝑛(2)

(𝑣−𝑣0)2

Δ𝑣2

)︂

However, using RADEX, we can do better than to assume LTE. For a given set of physical parameters RADEX
will provide the optical depth at line centre for every transition and the excitation temperature that gives the correct
brightness temperature at line centre.

Thus, rather than using our gas kinetic temperature and an LTE derived 𝜏0, we can take the values for each line from
an appropriate RADEX output. In the high density limit, this tends to the LTE solution but at lower densities it can
deviate significantly.

In SpectralRadex, we do this for each transition in a collisional datafile between a minimum and maximum frequency
set by the user. 𝑇𝐵 is calculated as a function of frequency for each line and then combined to give the overall spectrum
of the molecule.

5

http://dx.doi.org/10.1051/0004-6361:20066820

SpectralRadex, Release 0.1.1

Finally, we need to consider what to do with overlapping lines. We follow Hsieh et al 2015 and use an opacity weighted
radiation temperature:

𝑇𝐵 =

(︂
Σ𝑖𝐽𝜈(𝑇 𝑖

𝑒𝑥)𝜏 𝑖𝑣
Σ𝑖𝜏 𝑖𝑣

− 𝐽𝜈(𝑇𝐵𝐺)

)︂
(1 − exp(−𝜏𝑣))

We can multiply 𝑇𝐵 by the filling factor to get the main beam temperature.

6 Chapter 2. Formalism

https://iopscience.iop.org/article/10.1088/0004-637X/802/2/126

CHAPTER 3

Referencing

SpectralRadex has been released under a MIT license and therefore you are free to use, modify or copy it in any
way you wish. However, if you use SpectralRadex for any research purposes there are several references you should
include.

Firstly, RADEX itself was copied essentially in its entirety and forms the basis of all model ouputs. Therefore, one
should reference Van der Tak & Black 2007, the original work. Further, one should take care to acknowledge the work
of those producing their collisional data. If you used the collisional files built into SpectralRadex, these were all taken
from the Lamda Database where you can find the appropriate references for your molecules.

Finally, and particularly if you used the spectral modelling capabilities of SpectralRadex, we’d ask that you reference
the paper in which we first described the module Holdship et al. 2021 (in prep). and point your readers in the direction
of spectralradex.readthedocs.io

7

http://dx.doi.org/10.1051/0004-6361:20066820
https://home.strw.leidenuniv.nl/~moldata/
https:spectralradex.readthedocs.io

SpectralRadex, Release 0.1.1

8 Chapter 3. Referencing

CHAPTER 4

Trouble Shooting

4.1 Malloc() Error

SpectralRadex can return results for up to 500 transitions. This number is hard coded because Fortran cannot use
variable sized arrays as part of the python interface and so we had to choose a number which trades off a reasonably
high maximum with the fact a massive array would take up a lot of memory without being needed in 99% of cases.
However, if you run a species such as CH3OH over a very large frequency range, you can have more transitions than
this. This will result in an error

malloc(): corrupted top size
Abort (core dumped)

which can be resolved by setting fmin and fmax such that there are fewer than 500 transitions in the range of interest.
If you require more than 500 transitions, please contact us via github or email.

4.2 pip cannot find version

Could not find a version that satisfies the requirement spectralradex

If you get an error like this when trying to install spectralradex, you may need to install it from source. This can be
done by running

git clone https://github.com/uclchem/SpectralRadex.git
pip install ./SpectralRadex

This happens because we use Github Actions to pre-build the library for various python versions and OS combinations.
Not every combination is possible and so if your combination doesn’t exist, you need to build it from source.

9

SpectralRadex, Release 0.1.1

4.3 Mac Issues

Import Error. . . library not loaded

Recent updates to Mac OS have resulted in many Mac user’s python distributions expecting the standard Fortran
libraries to be in one place when they’re actually in another. The resulting error message looks like

Exception has occurred: ImportErrordlopen(/usr/local/lib/python3.9/site-packages/
→˓radexwrap.cpython-39-darwin.so, 2): Library not loaded: /usr/local/opt/gcc/lib/gcc/
→˓10/libgfortran.5.dylib Referenced from: /usr/local/lib/python3.9/site-packages/
→˓radexwrap.cpython-39-darwin.so Reason: image not found

In this case, SpectralRadex wants the libgfortran.5.dylib library and can’t find it. You can solve this with locate

locate libgfortran.5.dylib

which will tell you the actual location of the required library and then you can create a symbolic link to the expected
location.

ln /actual/path/to/libgfortran.5.dylib /the/path/python/expected/libgfortran.5.dylib

10 Chapter 4. Trouble Shooting

CHAPTER 5

Spectral Modelling Functions

spectralradex.noise_from_spectrum(intensities)
Estimate the rms noise level from a spectrum by assuming it is a gaussian noise distribution plus positive signal.
If this is true, the median should be the peak of the noise distribution and values smaller are just noise. Thus,
the mean square difference between the median and smaller values is the square of the noise rms.

Parameters intensities (float, iterable) – An array of the intensity values represent-
ing a spectrum

Returns The rms noise value

Return type float

spectralradex.convert_intensity_to_kelvin(frequencies, intensities, minor_beam, ma-
jor_beam)

Convert a spectrum from jy/beam to kelvin. All spectra produced by spectralradex use kelvin so this function
is intended to convert observed spectra for fitting. Treatment taken from https://science.nrao.edu/facilities/vla/
proposing/TBconv

Parameters

• intensities (float, iterable) – An array of the frequency values representing a
spectrum, in GHz

• intensities – An array of the intensity values at each of the frequencies in the frequency
array in Jy/beam.

• minor_beam (float) – beamsize along minor axis in arcseconds

• major_beam (float) – beamsize along major axis in arcseconds

spectralradex.maxwellian_distribution(v0, delta_v, tau_0, velocities)
Returns the optical depth as a function of velocity, assuming gaussian line profiles and given an optical depth a
line centre

Parameters

• v0 (float) – Peak velocity of the emission

11

https://science.nrao.edu/facilities/vla/proposing/TBconv
https://science.nrao.edu/facilities/vla/proposing/TBconv

SpectralRadex, Release 0.1.1

• delta_v – FWHM of the peaks, taken from linewidth parameter of RADEX when called
via model_spectrum()

• tau_0 (float) – The optical depth at line centre. Taken from RADEX when called via
model_spectrum()

• velocities (float, iterable) – An iterable containing the velocity values at
which to calculate tau

Returns An array with the tau value at each velocity in velocities

Return type ndarray,float

spectralradex.model_spectrum(obs_freqs, v0, radex_params, tau_profile=<function
maxwellian_distribution>)

Calculates the brightness temperature as a function of frequency for given input frequencies, 𝑉𝐿𝑆𝑅 velocity and
RADEX parameters.

Parameters

• obs_freqs (iterable, float) – An array of frequency values in GHz at which the
brightness temperature should be calculated.

• v0 (float) – The 𝑉𝐿𝑆𝑅 velocity of the emitting object to be modelled in km/s

• radex_params (dict) – A dictionary containing the inputs for the RADEX model. See
radex.get_default_parameters() for a list of possible parameters. Note this
includes the linewidth in km/s that will be used to set the shape of the emission lines.

• tau_profile (function, optional) – A function with the same arguments as
maxwellian_distribution() that returns the optical depth as a function of velocity.
If not set, spectralradex will assume gaussian line profiles centred on v0 and a FWHM taken
from the RADEX parameters.

12 Chapter 5. Spectral Modelling Functions

CHAPTER 6

Radex Wrapper Functions

spectralradex.radex.run(parameters, output_file=None)
Run a single RADEX model using a dictionary to set parameters.

Parameters

• parameters (dict) – A dictionary containing the RADEX inputs that the user wishes to
set, all other parameters will use the default values. See get_default_parameters()
for a list of possible parameters and run_params() for descriptions.

• output_file (str) – If not None, the RADEX results are stored to this file in csv
format/

spectralradex.radex.run_params(molfile, tkin, cdmol, nh=0.0, nh2=0.0, op_ratio=3.0, ne=0.0,
nhe=0.0, nhx=0.0, linewidth=1.0, fmin=0.0, fmax=500.0,
tbg=2.73, geometry=1, output_file=None)

Run a single RADEX model from individual parameters

Parameters

• molfile (float) – Either a full path or a relative path beginning with “.” to a datafile in
the Lamda database format. Alternatively, the filename of a datafile from list_data_files().

• tkin – Temperature of the Gas in Kelvin

• cdmol – Column density of the emitting species in cm −2

• nh (float, optional) – Number density of H atoms

• nh2 (float, optional) – Total number density of H2 molecules, set this to o-H2 +
p-H2 if using ortho and para H2 as collisional partners.

• op_ratio (float, optional) – Ortho to para ratio for H2. Defaults to statistical
limit of 3 and used to set o-H2 and p-H2 densities from nh2.

• ne (float, optional) – Number density of electron.

• nhe (float, optional) – Number density of He atoms.

• nhx – Number density of H+ ions.

13

SpectralRadex, Release 0.1.1

• linewidth (float, optional) – FWHM of the line in km s −1.

• fmin (float, optional) – Minimum frequency below which a line is not included in
the results.

• fmax (float, optional) – Maximum frequency above which a line is not included in
the results.

• tbg (float, optional) – Background temperature, defaults to CMB temperature 2.73
K.

• geometry (int, optional) – Choice of geometry of emitting object. 1 for sphere, 2
for LVG, 3 for slab.

spectralradex.radex.run_grid(parameters, target_value=’FLUX (K*km/s)’, pool=None)
Runs a grid of RADEX models using all combinations of any iterable items in the parameters dictionary whilst
keeping other parameters constant. Returns a dataframe of results and can be parallelized with the pool pa-
rameter.

Parameters

• parameters – A dictionary of parameters as provided by
get_default_parameters() or get_example_grid_parameters().
Parameters should take a single value when they are constant over the grid and contain and
interable if they are to be varied.

• molfile (str) – Either a full path or a relative path beginning with “.” to a datafile in the
Lamda database format. Alternatively, the filename of a datafile from list_data_files().

• target_value (str,optional) – RADEX output column to be returned. Select one
of ‘T_R (K)’, ‘FLUX (K*km/s)’, ‘FLUX (erg/cm2/s)’

• pool (Pool, optional) – a Pool object with map(), close() , and join() meth-
ods such as multiprocessing.Pool or schwimmbad.MPIPool. If supplied, the grid will be
calculated in parallel.

spectralradex.radex.get_default_parameters()
Get the default RADEX parameters as a dictionary, this largely serves as an example for the input required for
run().

molfile should be a collsional datafile in the LAMDA database format. If using a local file, a full path or a
relative path beginning with “.” is required. Otherwise, one of the files listed by list_data_files() can
be supplied without a path.

method is 1 (uniform sphere), 2 (LVG), or 3 (slab)

spectralradex.radex.get_example_grid_parameters()
Returns a dictionary of parameters for RADEX with iterables which can be used with run_grid().

spectralradex.radex.get_transition_table(molfile)
Reads a collisional data file and returns a pandas DataFrame for the molecule with one row per transition
containing the Einstein coefficients, upper level energy and frequency.

Parameters molfile (str) – Either the full path to a collisional datafile or the filename of one
supplied with SpectralRadex

spectralradex.radex.get_collisional_partners(molfile)
Reads a collisional data file and returns a dictionary containing the number of collisional partners and their
names. The partner names match the input keys for run()

Parameters molfile (str) – Either the full path to a collisional datafile or the filename of one
supplied with SpectralRadex

14 Chapter 6. Radex Wrapper Functions

SpectralRadex, Release 0.1.1

spectralradex.radex.thermal_h2_op_ratio(tkin)
If your data file has collisions with p-h2 and o-h2, you may want to use the thermal ratio to split your total H2
density. You can check that value for any given temperature with this function. Returns the ortho:para ratio as a
float

Parameters tkin (float) – Gas kinetic temperature

spectralradex.radex.list_data_files()
SpectralRadex is packaged with a selection of LAMDA collisional datafiles. This function prints the list of
available files. You can provide the full path to another file in the parameter dictionary to use one not packaged
with SpectralRadex.

Note: This tutorial was generated from an IPython notebook that can be downloaded here.

15

https://github.com/uclchem/SpectralRadex/tree/master/examples

SpectralRadex, Release 0.1.1

16 Chapter 6. Radex Wrapper Functions

CHAPTER 7

Radex

from spectralradex import radex
from multiprocessing import Pool
import numpy as np
import time

The simplest use case for SpectralRadex is to be a simple python wrapper for RADEX. This allows large grids of
RADEX models or complex parameter inference procedures to be run in an environment suited to those tasks.

If one wishes to run radex, we simply need a dictionary of the parameters RADEX expects. An example can be
obtained using the get_default_parameters() function like so

params = radex.get_default_parameters()
print("{")
for key,value in params.items():

print(f"\t{key} : {value}")
print("}")

{
molfile : co.dat
tkin : 30.0
tbg : 2.73
cdmol : 10000000000000.0
h2 : 100000.0
h : 0.0
e- : 0.0
p-h2 : 0.0
o-h2 : 0.0
h+ : 0.0
linewidth : 1.0
fmin : 0.0
fmax : 1000.0
geometry : 1

}

17

SpectralRadex, Release 0.1.1

Note that each possible collisional partner has a separated entry for its density. You can check the collisional partners
in your datafile with get_collisional_partners()

radex.get_collisional_partners("co.dat")

{'Number': 2, 'Partners': ['p-h2', 'o-h2']}

You only need to provide densities for the partners you wish to include in the calculation but you must include at least
one of the partners. Two species cases are:

• RADEX will sum the o-h2 and p-h2 density values to produce a h2 value.

• A small number of datafiles have p-H2 collsions only and you may wish to place your total h2 density in that
entry to approximate the o-h2 collisions

Once your parameter dictionary is set up, we pass that to the run() function.

output = radex.run(params)
output.head()

7.1 Parameter Grids

It is more likely that one will want to run the code over many combinations of input parameters. This can be achieved
via the run_grid() function. This function also takes a parameter dictionary of the same format as run(). How-
ever, variables which are too be varied over the grid should be supplied as iterables.

Furthermore, to keep things simple, the desired RADEXtakes iterables for the three variables (density, temperature
and column density) as well as fixed values for the other RADEX parameters. It then produces the RADEX output for
all combinations of the three iterables.

We’ll use an example grid which can be acquired using the get_example_grid_parameters() function.

parameters=radex.get_example_grid_parameters()
parameters

{'molfile': 'co.dat',
'tkin': array([10. , 82.5, 155. , 227.5, 300.]),
'tbg': 2.73,
'cdmol': array([1.e+14, 1.e+15, 1.e+16, 1.e+17, 1.e+18]),
'h2': array([10000. , 56234.13251903, 316227.76601684,

1778279.41003892, 10000000.]),
'h': 0.0,
'e-': 0.0,
'p-h2': 0.0,
'o-h2': 0.0,
'h+': 0.0,
'linewidth': 1.0,
'fmin': 0.0,
'fmax': 800.0,
'geometry': 1}

tic = time.perf_counter()

grid_df = radex.run_grid(parameters,target_value="T_R (K)")
toc = time.perf_counter()
print(f"run_grid took {toc-tic:0.4f} seconds without a pool")

18 Chapter 7. Radex

SpectralRadex, Release 0.1.1

run_grid took 2.8573 seconds without a pool

grid_df.iloc[:,0:6].head()

7.1.1 Parallelization

In order to be as flexible as possible, SpectralRadex has no built in multiprocessing. However, the run_grid()
function does take the optional parameter pool which should be an object with map(), join(), and close()
methods that allow functions to be evaluated in parallel. For example, the python standard multiprocessing.pool obect
or Schwimmbad’s MPIPool.

If such an object is supplied, the grid will be evaluated in parallel. Note the time in the example below compared to
the grid above.

tic = time.perf_counter()
pool=Pool(8)
grid_df = radex.run_grid(parameters,target_value="T_R (K)",pool=pool)
toc = time.perf_counter()
print(f"run_grid took {toc-tic:0.4f} seconds with a pool of 8 workers")
grid_df.iloc[:,0:6].head()

run_grid took 0.7338 seconds with a pool of 8 workers

Note: This tutorial was generated from an IPython notebook that can be downloaded here.

7.1. Parameter Grids 19

https://docs.python.org/3.6/library/multiprocessing.html
https://schwimmbad.readthedocs.io/en/latest/examples/#using-mpipool
https://github.com/uclchem/SpectralRadex/tree/master/examples

SpectralRadex, Release 0.1.1

20 Chapter 7. Radex

CHAPTER 8

Spectral Modelling

One of SpectralRadex’s key features is the ability to generate model spectra from RADEX models. In this example,
we show how to generate a spectrum.

import spectralradex
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

First, we need a radex model. This is just a dictionary with the RADEX inputs as keys. For this example, we’ll start by
grabbing the default parameters from the radex wrapper. Then we’ll increase the CO column density and the linewidth
as well as setting fmax to 300 GHz.

radex_params=spectralradex.radex.get_default_parameters()

radex_params["cdmol"]=1e16
radex_params["p-h2"]=1e4
radex_params["o-h2"]=1e4

radex_params["linewidth"]=10
radex_params["fmax"]=300

print(radex_params)

{'molfile': 'co.dat', 'tkin': 30.0, 'tbg': 2.73, 'cdmol': 1e+16, 'h2': 100000.0, 'h':
→˓0.0, 'e-': 0.0, 'p-h2': 10000.0, 'o-h2': 10000.0, 'h+': 0.0, 'linewidth': 10, 'fmin
→˓': 0.0, 'fmax': 300, 'geometry': 1}

We also need a list of frequencies over which we’d like the spectrum. Here, we’ll generate a spectrum with a 5 MHz
resolution between 80 and 300 GHz. Getting the model intensities is a simple function call which will return a pandas
dataframe of Frequency and Intensity.

The intention of SpectralRadex is to model observations. Thus, the first two inputs to the spectral modelling function
are intended to match some observations: the frequency bins you observed and the assume 𝑉𝐿𝑆𝑅 of the object.

21

SpectralRadex, Release 0.1.1

frequencies=np.arange(80,300,0.005)
v0=0.0
spectrum=spectralradex.model_spectrum(frequencies,v0,radex_params)

/home/jon/.local/lib/python3.8/site-packages/spectralradex/__init__.py:178:
→˓RuntimeWarning: invalid value encountered in true_divide
rad_weights=np.sum(rad_weights,axis=0)/taus

fig,ax=plt.subplots(figsize=(16,9))
ax.plot(spectrum["Frequency"],spectrum["Intensity"],drawstyle="steps-mid")
settings=ax.set(xlabel="Frequency / GHz",ylabel="T / K")

The above example shows two extremely narrow peaks but if we increase the linewidth a little and zoom in, we can
see the Gaussian shape we assume for all line in SpectralRadex.

radex_params["linewidth"]=100
spectrum=spectralradex.model_spectrum(frequencies,v0,radex_params)
fig,ax=plt.subplots(figsize=(16,9))
ax.plot(spectrum["Frequency"],spectrum["Intensity"],drawstyle="steps-mid")
settings=ax.set(xlim=(115.1,115.45),ylim=(0,0.1),xlabel="Frequency / GHz",ylabel="T /
→˓K")

/home/jon/.local/lib/python3.8/site-packages/spectralradex/__init__.py:178:
→˓RuntimeWarning: invalid value encountered in true_divide
rad_weights=np.sum(rad_weights,axis=0)/taus

22 Chapter 8. Spectral Modelling

SpectralRadex, Release 0.1.1

Finally, please note that if you sample with too large a frequency bin, you’ll miss lines. We are still considering what
the default behaviour should be in this case. For now, SpectralRadex will warn you if the velocity bins are larger than
the linewidth.

Here we repeat the above calculation with a 50 MHz frequency spacing.

frequencies=np.arange(30,300,0.05)
v0=0.0
spectrum=spectralradex.model_spectrum(frequencies,v0,radex_params)
fig,ax=plt.subplots(figsize=(16,9))
ax.plot(spectrum["Frequency"],spectrum["Intensity"],drawstyle="steps-mid")
settings=ax.set(xlim=(90,300.6),xlabel="Frequency / GHz",ylabel="T / K")

/home/jon/.local/lib/python3.8/site-packages/spectralradex/__init__.py:178:
→˓RuntimeWarning: invalid value encountered in true_divide
rad_weights=np.sum(rad_weights,axis=0)/taus

23

SpectralRadex, Release 0.1.1

24 Chapter 8. Spectral Modelling

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

25

SpectralRadex, Release 0.1.1

26 Chapter 9. Indices and tables

Python Module Index

s
spectralradex, 11
spectralradex.radex, 13

27

SpectralRadex, Release 0.1.1

28 Python Module Index

Index

C
convert_intensity_to_kelvin() (in module

spectralradex), 11

G
get_collisional_partners() (in module spec-

tralradex.radex), 14
get_default_parameters() (in module spectral-

radex.radex), 14
get_example_grid_parameters() (in module

spectralradex.radex), 14
get_transition_table() (in module spectral-

radex.radex), 14

L
list_data_files() (in module spectral-

radex.radex), 15

M
maxwellian_distribution() (in module spec-

tralradex), 11
model_spectrum() (in module spectralradex), 12

N
noise_from_spectrum() (in module spectral-

radex), 11

R
run() (in module spectralradex.radex), 13
run_grid() (in module spectralradex.radex), 14
run_params() (in module spectralradex.radex), 13

S
spectralradex (module), 11
spectralradex.radex (module), 13

T
thermal_h2_op_ratio() (in module spectral-

radex.radex), 14

29

	Installation
	Pypi
	Manual Install

	Formalism
	RADEX
	Spectral Modelling

	Referencing
	Trouble Shooting
	Malloc() Error
	pip cannot find version
	Mac Issues

	Spectral Modelling Functions
	Radex Wrapper Functions
	Radex
	Parameter Grids

	Spectral Modelling
	Indices and tables
	Python Module Index
	Index

